1.1 Eindimensionale Bewegung

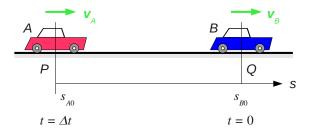
Lösungen

Aufgabe 1

Wahl des Koordinatensystems

Die Zeit wird ab dem Zeitpunkt gemessen, zu dem Fahrzeug *B* den Punkt *Q* passiert.

Als Nullpunkt für die Ortskoordinate wird Punkt *P* gewählt.



Fahrzeug A

Zum Zeitpunkt $t_{A0} = \Delta t$ befindet sich Fahrzeug A im Punkt P. Da der Weg ab Punkt P gemessen wird, ist $s_{A0} = 0$. Damit lautet das Ort-Zeit-Gesetz für Fahrzeug A:

$$s_A(t) = v_A(t - t_{A0}) = v_A(t - \Delta t)$$

Fahrzeug B

Zum Zeitpunkt $t_{B0} = 0$ befindet sich Fahrzeug B im Punkt Q. Punkt Q befindet sich an der Stelle $s_{B0} = \Delta s$. Damit lautet das Ort-Zeit-Gesetz für Fahrzeug B:

$$s_B(t) = s_{B0} + v_B t = \Delta s + v_B t$$

Einholen

Zum Zeitpunkt t_E des Einholens gilt

$$s_A(t_E) = s_B(t_E)$$
,

d.h.

$$v_A(t_E - \Delta t) = \Delta s + v_B t_E$$
.

Diese Gleichung kann nach t_E aufgelöst werden:

$$(v_A - v_B)t_E = \Delta s + v_A \Delta t \rightarrow t_E = \frac{\Delta s + v_A \Delta t}{v_A - v_B}$$

Ein Einholen ist nur möglich für $v_A > v_B$.

Für den Ort se des Einholens folgt

$$\begin{split} s_E &= s_A(t_E) = v_A \left(\frac{\Delta \, s + v_A \, \Delta \, t}{v_A - v_B} - \Delta \, t \right) = v_A \frac{\Delta \, s + v_A \, \Delta \, t - \left(v_A - v_B \right) \Delta \, t}{v_A - v_B} \\ &= \frac{v_A}{v_A - v_B} \left(\Delta \, s + v_B \, \Delta \, t \right) \end{split}$$

Die gleiche Beziehung ergibt sich auch aus $s_E = s_B(t_E)$.

Zahlenwerte

Zeitpunkt des Einholens:

$$t_E = \frac{500 \,\mathrm{m} + 120/3.6 \,\mathrm{m/s} \cdot 10 \,\mathrm{s}}{(120 - 100)/3.6 \,\mathrm{m/s}} = \frac{500 \,\mathrm{m} + 333.3 \,\mathrm{m}}{5.556 \,\mathrm{m/s}} = \frac{150 \,\mathrm{s}}{100 \,\mathrm{m/s}}$$

Ort des Einholens:

$$s_E = \frac{120 \text{ km/h}}{120 \text{ km/h} - 100 \text{ km/h}} (500 \text{ m} + 100/3, 6 \text{ m/s} \cdot 10 \text{ s}) = 6 \cdot (500 \text{ m} + 277, 78 \text{ m})$$

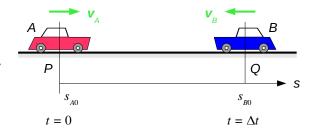
= 4667 m = 4.667 km

Aufgabe 2

Wahl des Koordinatensystems

Die Zeit wird ab dem Zeitpunkt gemessen, zu dem Fahrzeug A den Punkt P passiert.

Als Nullpunkt für die Ortskoordinate wird Punkt *P* gewählt.



Fahrzeug A

Zum Zeitpunkt $t_{A0} = 0$ befindet sich Fahrzeug A im Punkt P. Da der Weg ab Punkt P gemessen wird, ist $s_{A0} = 0$. Damit lautet das Ort-Zeit-Gesetz für Fahrzeug A:

$$s_A(t) = v_A t$$

Fahrzeug *B*

Zum Zeitpunkt $t_{B0} = \Delta t$ befindet sich Fahrzeug B im Punkt Q, der den Abstand D vom Punkt P hat, ab dem der Weg gemessen wird. Also ist $s_{B0} = D$. Das

Fahrzeug fährt in die entgegengesetzte Richtung. Das Ort-Zeit-Gesetz für Fahrzeug *B* lautet damit:

$$s_B(t) = s_{B0} - v_B(t - t_{B0}) = D - v_B(t - \Delta t)$$

Begegnen

Zum Zeitpunkt t_T der Begegnung gilt

$$s_A(t_T) = s_B(t_T) : v_A t_T = D - v_B(t_T - \Delta t)$$

Auflösen nach t_T liefert

$$(v_A + v_B)t_T = D + v_B \Delta t \rightarrow t_T = \frac{D + v_B \Delta t}{v_A + v_B}$$
.

Für den Ort s_T der Begegnung folgt

$$s_T = s_A(t_T) = \frac{v_A}{v_A + v_B} (D + v_B \Delta t) .$$

Die gleiche Beziehung ergibt sich auch aus $s_T = s_B(t_T)$.

Zahlenwerte

Zeitpunkt der Begegnung:

$$t_T = \frac{5000 \text{ m} + 100/3.6 \text{ m/s} \cdot 60 \text{ s}}{(120 + 100)/3.6 \text{ m/s}} = \frac{5000 \text{ m} + 1667 \text{ m}}{61,11 \text{ m/s}} = \frac{109.1 \text{ s}}{6120 + 1000}$$

Ort der Begegnung:

$$s_T = \frac{120 \text{ km/h}}{220 \text{ km/h}} (5000 \text{ m} + 100/3,6 \text{ m/s} \cdot 60 \text{ s}) = 0,5455 \cdot (5000 \text{ m} + 1667 \text{ m})$$

= 3636 m = 3,636 km

Aufgabe 3

a) Überholvorgang im Ort-Zeit-Diagramm

Ort und Zeit werden ab dem Beginn des Überholvorgangs gemessen. Als Bezugspunkt für den Ort des Fahrzeugs wird die Vorderseite des Fahrzeugs gewählt.

b) Überholweg und Überholzeit

Aus dem Ort-Zeit-Diagramm lässt sich entnehmen:

$$s_U = v_B t_U = d_1 + d_2 + 2L + v_A t_U$$

Daraus folgt für die Überholzeit t_U :

$$(v_B - v_A)t_U = d_1 + d_2 + 2L$$

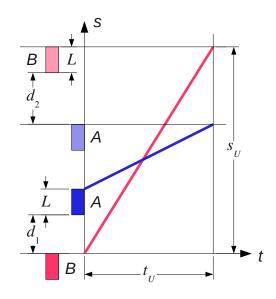
$$\rightarrow t_U = \frac{d_1 + d_2 + 2L}{v_B - v_A}$$

Zahlenwert:

$$t_U = \frac{30 \text{ m} + 50 \text{ m} + 2.4 \text{ m}}{(110 - 80)/3.6 \text{ m/s}} = \underline{10.56 \text{ s}}$$

Damit berechnet sich der Überholweg zu

$$s_U = (110/3,6) \,\mathrm{m/s} \cdot 10,56 \,\mathrm{s} = \underline{322,7 \,\mathrm{m}}$$
.



Aufgabe 4

a) Mittlere Geschwindigkeit

Die mittlere Bahngeschwindigkeit berechnet sich aus

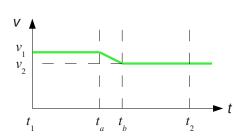
$$v_m = \frac{s_2 - s_1}{t_2 - t_1}$$
.

Mit $s_1 = 87$ km, $s_2 = 177$ km, $t_1 = 11$ h 37 min = 11,617 h und $t_2 = 12$ h 22 min = 12,617 h folgt:

$$v_m = \frac{177 \,\mathrm{km} - 87 \,\mathrm{km}}{12,367 \,\mathrm{h} - 11,617 \,\mathrm{h}} = \frac{120 \,\mathrm{km/h}}{12,367 \,\mathrm{h} - 11,617 \,\mathrm{h}}$$

b) <u>Geschwindigkeiten</u>

Die gesamte Bewegung setzt sich zusammen aus einer gleichförmigen Bewegung, einer gleichmäßig verzögerten Bewegung und einer gleichförmigen Bewegung.



Abschnitt 1: Gleichförmige Bewegung

Für den zurückgelegten Weg gilt:

$$s_a = s(t_a) = s_1 + v_1(t_a - t_1)$$

Abschnitt 2: Gleichmäßig verzögerte Bewegung

Für die Geschwindigkeit gilt: $v_2 = v(t_b) = v_1 - a(t_b - t_a)$

Für den zurückgelegten Weg gilt: $s_b = s(t_b) = s_a + v_1(t_b - t_a) - \frac{a}{2}(t_b - t_a)^2$

Abschnitt 3: Gleichförmige Bewegung

Für den zurückgelegten Weg gilt: $s_2 = s_b + v_2(t_2 - t_b)$

Bestimmung von v_1

$$\begin{split} s_2 &= s_b + v_2(t_2 - t_b) \\ &= s_a + v_1(t_b - t_a) - \frac{a}{2}(t_b - t_a)^2 + \left[v_1 - a(t_b - t_a)\right](t_2 - t_b) \\ &= s_1 + v_1(t_a - t_1) + v_1(t_b - t_a) - \frac{a}{2}(t_b - t_a)^2 + \left[v_1 - a(t_b - t_a)\right](t_2 - t_b) \end{split}$$

Daraus folgt zunächst

$$\begin{split} s_2 - s_1 &= v_1 \big(t_a - t_1 + t_b - t_a + t_2 - t_b \big) - a \big(t_b - t_a \big) \bigg[\frac{1}{2} \big(t_b - t_a \big) + t_2 - t_b \bigg] \\ &= v_1 \big(t_2 - t_1 \big) - a \big(t_b - t_a \big) \bigg[t_2 - \frac{1}{2} \big(t_b + t_a \big) \bigg] \ . \end{split}$$

Auflösen nach v_1 ergibt:

$$v_1 = \frac{1}{t_2 - t_1} \left[s_2 - s_1 + a(t_b - t_a) \left(t_2 - \frac{1}{2} (t_b + t_a) \right) \right]$$

Zahlenwerte:

$$s_2 - s_1 = 177 \text{ km} - 87 \text{ km} = 90 \text{ km} = 90000 \text{ m}$$

$$t_b - t_a = 12 \text{ h } 7 \text{ min} - 11 \text{ h } 58 \text{ min} = 9 \text{ min} = 540 \text{ s}$$

$$\frac{1}{2} (t_b + t_a) = \frac{1}{2} (12 \text{ h } 7 \text{ min} + 11 \text{ h } 58 \text{ min}) = \frac{1}{2} (24 \text{ h } 5 \text{ min}) = 12 \text{ h } 2,5 \text{ min}$$

$$t_2 - \frac{1}{2} (t_b + t_a) = 12 \text{ h } 22 \text{ min} - 12 \text{ h } 2,5 \text{ min} = 19,5 \text{ min} = 1170 \text{ s}$$

$$t_2 - t_1 = 12 \text{ h } 22 \text{ min} - 11 \text{ h } 37 \text{ min} = 45 \text{ min} = 2700 \text{ s}$$

$$v_1 = \frac{90000 \text{ m} + 0,1 \text{ m/s}^2 \cdot 540 \text{ s} \cdot 1170 \text{ s}}{2700 \text{ s}} = 56,73 \text{ m/s} = \frac{204,24 \text{ km/h}}{2700 \text{ s}}$$

Die Geschwindigkeit v2 berechnet sich aus

$$v_2 = v_1 - a(t_b - t_a)$$

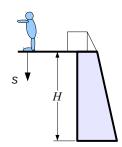
zu

$$v_2 = 56,73 \text{ m/s} - 0.1 \text{ m/s}^2 \cdot 540 \text{ s} = 2,73 \text{ m/s} = 9,84 \text{ km/h}$$
.

Aufgabe 5

Wahl des Koordinatensystems:

- Die Ortskoordinate s wird vom Absprungort positiv nach unten gemessen.
- Die Zeit wird ab dem Absprung gemessen, d. h. $t_0 = 0$.



Anfangsbedingungen:

$$- s(0) = s_0 = 0$$

$$-v(0)=v_0=0$$

Die Beschleunigung ist gleich der Erdbeschleunigung: $a(t)=a_0=g$ Es handelt sich um eine gleichmäßig beschleunigte Bewegung.

a) Geschwindigkeit-Zeit-Gesetz und Ort-Zeit-Gesetz

Geschwindigkeit: v(t) = gt

Ort: $s(t) = \frac{1}{2} g t^2$

b) Zeit bis zum Auftreffen

Zum Zeitpunkt des Auftreffens gilt: $H = s(T) = \frac{1}{2}gT^2 \Rightarrow T = \sqrt{\frac{2H}{g}}$

Zahlenwert: $T = \sqrt{\frac{2.5 \text{ m}}{9.81 \text{ m/s}^2}} = \frac{1.010 \text{ s}}{1.010 \text{ s}}$

c) Geschwindigkeit beim Auftreffen

Zum Zeitpunkt des Auftreffens gilt: $v_A = v(T) = g\sqrt{\frac{2H}{g}} = \sqrt{2gH}$

Zahlenwert: $v_A = \sqrt{2.9,81 \,\text{m/s}^2.5 \,\text{m}} = 9,905 \,\text{m/s}$

a) Beschleunigung

Für die Geschwindigkeit gilt: $v(s) = \sqrt{2as}$

Aus $v_1 = \sqrt{2 a s_1}$ folgt:

$$a = \frac{v_1^2}{2s_1}$$

Zahlenwert: $a = \frac{(30/3.6)^2 \text{ m}^2/\text{s}^2}{2 \cdot 20 \text{ m}} = \underline{1.736 \text{ m/s}^2}$

b) Zeit

Aus $v_1 = at_1$ folgt: $t_1 = \frac{v_1}{a} = \frac{2s_1v_1}{v_1^2} = 2\frac{s_1}{v_1}$

Zahlenwert: $t_1 = \frac{2 \cdot 20 \text{ m}}{(30/3,6) \text{ m/s}} = \frac{40 \text{ m}}{8,333 \text{ m/s}} = \frac{4,8 \text{ s}}{8,333 \text{ m/s}}$

Aufgabe 7

Wahl des Koordinatensystems

Die Zeit wird ab dem Zeitpunkt gemessen, zu dem Ball A fallen gelassen und Ball B nach oben geworfen wird.

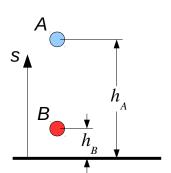
Die Ortskoordinate s wird ab dem Erdboden nach oben gemessen.

Ball A

Zum Zeitpunkt $t_0 = 0$ ist der Ball in Ruhe und befindet sich an der Stelle $s_{A0} = h_A$.

Damit lautet das Ort-Zeit-Gesetz:

$$s_A(t) = h_A - \frac{1}{2}gt^2$$



Ball B

Zum Zeitpunkt $t_0 = 0$ hat der Ball die Anfangsgeschwindigkeit v_B und befindet sich an der Stelle $s_{B0} = h_B$.

Damit lautet das Ort-Zeit-Gesetz:

$$s_B(t) = h_B + v_B t - \frac{1}{2} g t^2$$

Begegnung

Die Zeit t_T , zu der sich die Bälle begegnen, folgt aus

$$h = s_A(t_T) = h_A - \frac{1}{2}gt_T^2$$

zu

$$t_T = \sqrt{2 \frac{h_A - h}{g}} .$$

Die nötige Abwurfgeschwindigkeit v_B für Ball B folgt aus

$$h = s_B(t_T) = h_B + v_B t_T - \frac{1}{2} g t_T^2$$

zu

$$v_{B} = \frac{h - h_{B} + \frac{1}{2}g t_{T}^{2}}{t_{T}} = \frac{h - h_{B}}{t_{T}} + \frac{1}{2}g t_{T}.$$

Zahlenwerte

Zeit:

$$t_T = \sqrt{2 \frac{12 \text{ m} - 6 \text{ m}}{9.81 \text{ m/s}^2}} = 1.106 \text{ s}$$

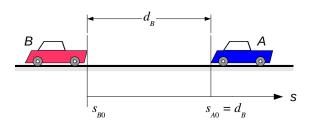
Abwurfgeschwindigkeit:

$$v_B = \frac{6 \text{ m} - 1.5 \text{ m}}{1,106 \text{ s}} + \frac{1}{2} \cdot 9.81 \text{ m/s}^2 \cdot 1.106 \text{ s} = \frac{9.494 \text{ m/s}}{1.06 \text{ s}}$$

Wahl des Koordinatensystems

Die Zeit wird ab dem Zeitpunkt gemessen, zu dem Fahrzeug A zu bremsen beginnt.

Als Nullpunkt für die Ortskoordinate s wird der Punkt gewählt, an dem sich Fahrzeug B befindet, wenn Fahrzeug A zu bremsen beginnt.



Skizze des Vorgangs im Ort-Zeit-Diagramm

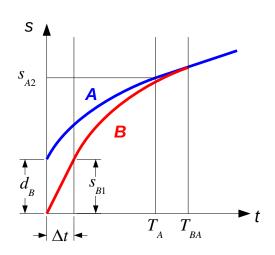
Zum Zeitpunkt T_A beendet Fahrzeug A das Bremsen.

Zum Zeitpunkt T_{BA} trifft Fahrzeug B auf Fahrzeug A.

Umrechnung der Geschwindigkeiten

$$v_{A1} = 140/3,6 \text{ m/s} = 38,89 \text{ m/s}$$

 $v_{A2} = 100/3,6 \text{ m/s} = 27,78 \text{ m/s}$



<u>Fahrzeug A</u>

Während des Bremsens gilt:

$$0 \le t \le T_A$$
: $v_A(t) = v_{A1} - a_A t$, $s_A(t) = d_B + v_{A1} t - \frac{1}{2} a_A t^2$

Am Ende des Bremsens hat das Fahrzeug die Geschwindigkeit v_{A2} :

$$v_{A2} = v(T_A) = v_{A1} - a_A T_A$$

Daraus folgt für die Bremszeit: $T_A = \frac{v_{A1} - v_{A2}}{a_A}$

Aus

$$v_{A2} = \sqrt{v_{A1}^2 - 2 a_A (s_{A2} - d_B)}$$

folgt für den Ort am Ende des Bremsens: $v_{A2}^2 - v_{A1}^2 = -2 a_A (s_{A2} - d_B)$

$$\frac{v_{A1}^2 - v_{A2}^2}{2 a_A} = s_{A2} - d_B \rightarrow s_{A2} = d_B + \frac{v_{A1}^2 - v_{A2}^2}{2 a_A}$$

Zahlenwerte:

$$T_A = \frac{38,89 \,\text{m/s} - 27,78 \,\text{m/s}}{5 \,\text{m/s}^2} = \underline{2,222 \,\text{s}}$$

$$s_{A2} = 50 \,\text{m} + \frac{38,89^2 \,\text{m}^2/\text{s}^2 - 27,78^2 \,\text{m}^2/\text{s}^2}{2.5 \,\text{m/s}^2} = 50 \,\text{m} + 74,07 \,\text{m} = \underline{124,1 \,\text{m}}$$

Nach dem Bremsen fährt das Fahrzeug mit der konstanten Geschwindigkeit v_{A2} weiter. Dann gilt:

$$t > T_A$$
: $v_A(t) = v_{A2}$, $s_A(t) = s_{A2} + v_{A2}(t - T_A)$

Fahrzeug B

Während der Zeit Δt , bis der Fahrer zu bremsen beginnt, fährt das Fahrzeug mit der konstanten Geschwindigkeit v_{A1} . Während dieser Zeit gilt:

$$0 \le t \le \Delta t$$
: $v_B(t) = v_{A1}$, $s_B(t) = v_{A1}t$

Zum Zeitpunkt des Bremsbeginns befindet sich das Fahrzeug an der Stelle

$$s_{B1} = s_B(\Delta t) = v_{A1} \Delta t$$
.

Wegen $\Delta t < T_A$ befindet sich Fahrzeug A zu dieser Zeit an der Stelle

$$s_A(\Delta t) = d_B + v_{A1} \Delta t - \frac{1}{2} a_A \Delta t^2.$$

Zahlenwerte:

$$s_{B1} = 38,89 \text{ m/s} \cdot 1 \text{ s} = \underline{38,89 \text{ m}}$$

 $s_A(\Delta t) = 50 \text{ m} + 38,89 \text{ m/s} \cdot 1 \text{ s} - \frac{1}{2} \cdot 5 \text{ m/s}^2 \cdot 1^2 \text{ s}^2 = \underline{86,39 \text{ m}}$

Wegen $s_A(\Delta t) > s_{B1}$ ist Fahrzeug B während der Reaktionszeit nicht auf Fahrzeug A aufgefahren.

Während des Bremsens von Fahrzeug B gilt:

$$t > \Delta t: \ v_B(t) = v_{A1} - a_B(t - \Delta t), \ s_B(t) = s_{B1} + v_{A1}(t - \Delta t) - \frac{1}{2}a_B(t - \Delta t)^2$$

Auftreffen von Fahrzeug B auf Fahrzeug A

Fahrzeug B fährt gerade nicht auf, wenn es zum Zeitpunkt T_{BA} , zu dem es auf Fahrzeug A trifft, die gleiche Geschwindigkeit wie Fahrzeug A hat, d. h.

$$v_B(T_{BA}) = v_A(T_{BA})$$
 und $s_B(T_{BA}) = s_A(T_{BA})$.

Aus diesen beiden Gleichungen können die beiden Unbekannten a_B und T_{BA} bestimmt werden. Dabei sind zwei Fälle zu unterscheiden:

- 1. Fahrzeug B trifft auf Fahrzeug A, während beide Fahrzeuge bremsen.
- 2. Fahrzeug B trifft auf Fahrzeug A, während Fahrzeug A mit der konstanten Geschwindigkeit v_{A2} fährt.

Fall 1: Fahrzeug A bremst

Die beiden Bedingungen dafür, dass Fahrzeug *B* gerade nicht auffährt, lauten:

$$\begin{split} & v_{B}(T_{BA}) = v_{A}(T_{BA}) \ \, \Rightarrow \ \, v_{A1} - a_{B}(T_{BA} - \Delta t) = v_{A1} - a_{A}T_{BA} \\ & s_{B}(T_{BA}) = s_{A}(T_{BA}) \\ & \Rightarrow \ \, s_{B1} + v_{A1}(T_{BA} - \Delta t) - \frac{1}{2}a_{B}(T_{BA} - \Delta t)^{2} = d_{B} + v_{A1}T_{BA} - \frac{1}{2}a_{A}T_{BA}^{2} \end{split}$$

Aus der ersten Gleichung folgt:

$$a_B = a_A \frac{T_{BA}}{T_{BA} - \Delta t}$$

Aus der zweiten Gleichung folgt zunächst

$$s_{B1} - d_B - v_{A1} \Delta t - \frac{1}{2} a_B (T_{BA} - \Delta t)^2 + \frac{1}{2} a_A T_{BA}^2 = 0$$

und daraus unter Benutzung der Gleichung für a_B weiter:

$$s_{B1} - d_B - v_{A1} \Delta t - \frac{1}{2} a_A \left[T_{BA} \left(T_{BA} - \Delta t \right) - T_{BA}^2 \right] = s_{B1} - d_B - v_{A1} \Delta t + \frac{1}{2} a_A T_{BA} \Delta t = 0$$

Damit ergibt sich:

$$T_{BA} = 2 \frac{d_B + v_{A1} \Delta t - s_{B1}}{a_A \Delta t} = \frac{2 d_B}{a_A \Delta t}$$

Zahlenwert:

$$T_{BA} = \frac{2.50 \text{ m}}{5 \text{ m/s}^2 \cdot 1 \text{ s}} = 20 \text{ s}$$

Wegen $T_{BA} > T_A$ tritt dieser Fall nicht ein.

Fall 2: Fahrzeug A fährt mit der konstanten Geschwindigkeit v_{A2}

Die beiden Bedingungen dafür, dass Fahrzeug *B* gerade nicht auffährt, lauten:

$$\begin{aligned} v_{B}(T_{BA}) &= v_{A}(T_{BA}) \implies v_{A1} - a_{B}(T_{BA} - \Delta t) = v_{A2} \\ s_{B}(T_{BA}) &= s_{A}(T_{BA}) \\ &\implies s_{B1} + v_{A1}(T_{BA} - \Delta t) - \frac{1}{2}a_{B}(T_{BA} - \Delta t)^{2} = s_{A2} + v_{A2}(T_{BA} - T_{A}) \end{aligned}$$

Aus der ersten Gleichung folgt:

$$a_B = \frac{v_{A1} - v_{A2}}{T_{BA} - \Delta t}$$

Einsetzen in die zweite Gleichung liefert

$$s_{B1} + v_{A1} (T_{BA} - \Delta t) - \frac{1}{2} (v_{A1} - v_{A2}) (T_{BA} - \Delta t) = s_{A2} + v_{A2} (T_{BA} - T_A).$$

Daraus folgt zunächst

$$\frac{1}{2} (v_{A1} - v_{A2}) T_{BA} = s_{A2} - s_{B1} + \frac{1}{2} (v_{A1} + v_{A2}) \Delta t - v_{A2} T_{A}$$

und daraus

$$T_{BA} = \frac{2}{v_{A1} - v_{A2}} \left(s_{A2} - s_{B1} + \frac{1}{2} (v_{A1} + v_{A2}) \Delta t - v_{A2} T_A \right).$$

Zahlenwert:

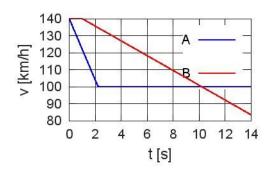
$$T_{BA} = 2 \frac{124,07 \,\mathrm{m} - 38,89 \,\mathrm{m} + \frac{1}{2} (38,89 + 27,78) \,\mathrm{m/s} \cdot 1 \,\mathrm{s} - 27,78 \,\mathrm{m/s} \cdot 2,222 \,\mathrm{s}}{38,89 \,\mathrm{m/s} - 27,78 \,\mathrm{m/s}}$$

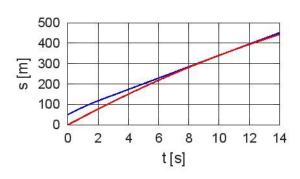
$$\rightarrow T_{BA} = \underline{10,22 \text{ s}}$$

Für die gesuchte Verzögerung a_B folgt damit:

$$a_B = \frac{(38,89 - 27,78) \,\mathrm{m/s}}{(10,22 - 1) \mathrm{s}} = \underline{1,205 \,\mathrm{m/s}^2}$$

Diagramme





Die Ortskoordinate s wird ab dem zum Zeitpunkt t = 0 eingenommenen Ort gemessen. Dann gilt für die bis zum Zeitpunkt t_1 zurückgelegte Strecke

$$s = \int_{0}^{t_{1}} v(t) dt = v_{0} \int_{0}^{t_{1}} (1 - e^{-3t/t_{1}}) dt.$$

Die Integration ergibt

$$s = v_0 \left[t + \frac{t_1}{3} e^{-3t/t_1} \right]_0^{t_1} = v_0 \left[t_1 + \frac{t_1}{3} (e^{-3} - 1) \right] = v_0 t_1 \left(\frac{2}{3} + \frac{1}{3 e^3} \right) = \frac{1}{3} v_0 t_1 (2 + e^{-3}).$$

Die Beschleunigung berechnet sich aus der zeitlichen Ableitung der Geschwindigkeit:

$$a(t) = \dot{v}(t) = v_0 \cdot \frac{3}{t_1} e^{-3t/t_1} = 3 \frac{v_0}{t_1} e^{-3t/t_1}, \ a_1 = a(t_1) = 3 \frac{v_0}{t_1} e^{-3}$$

Zahlenwerte

$$s = \frac{1}{3} \cdot 20 \text{ m/s} \cdot 3 \cdot (2 + e^{-3}) = \underline{41,00 \text{ m}}$$
$$a_1 = 3 \cdot \frac{20 \text{ m/s}}{3 \text{ s}} \cdot e^{-3} = \underline{0,9957 \text{ m/s}}^2$$

Aufgabe 10

a) Geschwindigkeit-Zeit-Gesetz und Ort-Zeit-Gesetz

Mit $t_0 = 0$ und $v_0 = 0$ gilt für die Geschwindigkeit:

$$v(t) = \int_{0}^{t} a(\tau) d\tau = a_{0} \int_{0}^{t} (1 - e^{-\alpha \tau}) d\tau = a_{0} \left[\tau + \frac{1}{\alpha} e^{-\alpha \tau} \right]_{\tau=0}^{\tau=t} = a_{0} \left(t + \frac{1}{\alpha} (e^{-\alpha t} - 1) \right)$$

Mit $s_0 = 0$ folgt für den Ort:

$$\begin{split} s(t) &= \int_{0}^{t} v(\tau) d\tau = a_{0} \int_{0}^{t} \left(\tau - \frac{1}{\alpha} + \frac{e^{-\alpha \tau}}{\alpha} \right) d\tau = a_{0} \left[\frac{\tau^{2}}{2} - \frac{\tau}{\alpha} - \frac{e^{-\alpha \tau}}{\alpha^{2}} \right]_{\tau=0}^{\tau=t} \\ &= a_{0} \left(\frac{t^{2}}{2} - \frac{t}{\alpha} - \frac{1}{\alpha^{2}} (e^{-\alpha t} - 1) \right) \end{split}$$

b) Geschwindigkeit und Ort zum Zeitpunkt t_1

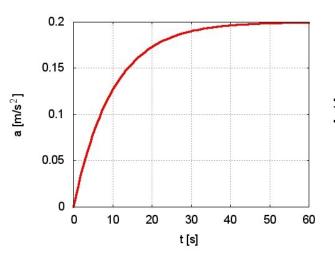
Geschwindigkeit:

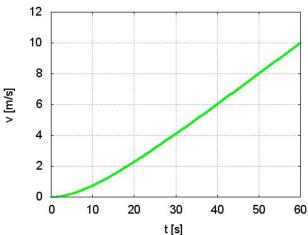
$$v_1 = v(t_1) = 0.2 \,\text{m/s}^2 \cdot \left(60 \,\text{s} + \frac{1}{0.1} \,\text{s} \left(e^{-0.1.60} - 1\right)\right) = \underline{10.00 \,\text{m/s}}$$

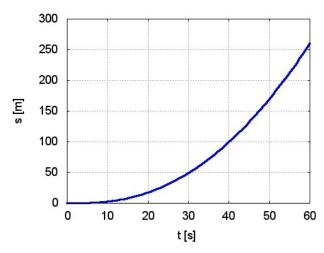
Ort:

$$s_1 = s(t_1) = 0.2 \,\text{m/s}^2 \cdot \left(\frac{60^2}{2} - \frac{60}{0.1} - \frac{1}{0.1^2} (e^{-0.1 \cdot 60} - 1) \right) s^2 = \underline{260.0 \,\text{m}}$$

Diagramme







a) a-s-Diagramm

Für die Beschleunigung gilt

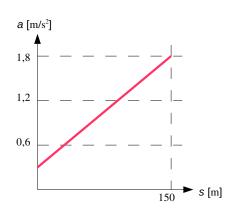
$$a(s) = v \frac{dv}{ds} = \left(v_0 + (v_1 - v_0) \frac{s}{s_1}\right) \frac{v_1 - v_0}{s_1} = a_0 + \left(\frac{v_1 - v_0}{s_1}\right)^2 s$$
mit $a_0 = v_0 \frac{v_1 - v_0}{s_1}$.

Zahlenwerte:

$$a_0 = 3 \frac{\text{m}}{\text{s}} \cdot \frac{18 \text{ m/s} - 3 \text{ m/s}}{150 \text{ m}} = 0.3 \frac{\text{m}}{\text{s}^2}$$

$$a(s) = 0.3 \frac{\text{m}}{\text{s}^2} + \left(\frac{15 \text{ m/s}}{150 \text{ m}}\right)^2 \text{s} = 0.3 \frac{\text{m}}{\text{s}^2} + 0.01 \frac{1}{\text{s}^2} \cdot \text{s}$$

$$a(s_1) = a(150 \text{ m}) = 1.8 \frac{\text{m}}{\text{s}^2}$$



b) Benötigte Zeit

Mit $t_0 = 0$ und $s_0 = 0$ gilt für die für die Strecke s_1 benötigte Zeit t_1 :

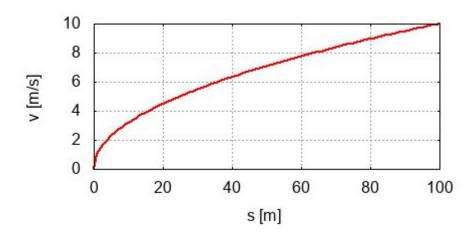
$$t_{1} = \int_{0}^{s_{1}} \frac{ds}{v(s)} = \int_{0}^{s_{1}} \frac{ds}{v_{0} + \frac{v_{1} - v_{0}}{s_{1}} s} = \left[\frac{s_{1}}{v_{1} - v_{0}} \ln \left(v_{0} + \frac{v_{1} - v_{0}}{s_{1}} s \right) \right]_{s=0}^{s=s_{1}}$$

$$= \frac{s_{1}}{v_{1} - v_{0}} \left(\ln \left(v_{0} + v_{1} - v_{0} \right) - \ln v_{0} \right) = \frac{s_{1}}{v_{1} - v_{0}} \ln \left(\frac{v_{1}}{v_{0}} \right)$$

Zahlenwert:

$$t_1 = \frac{150 \text{ m}}{18 \text{ m/s} - 3 \text{ m/s}} \ln \left(\frac{18}{3} \right) = \underline{17,92 \text{ s}}$$

a) <u>v-s-Diagramm</u>



b) Beschleunigungen

Für die Beschleunigung gilt:

$$a(s) = \frac{1}{2} \frac{dv^2}{ds} = \frac{1}{2} v_1^2 \frac{d}{ds} \left(\frac{s}{s_1} \right) = \frac{v_1^2}{2 s_1}$$

Die Beschleunigung hat den konstanten Wert

$$a = \frac{10^2 \text{ m}^2/\text{s}^2}{2 \cdot 100 \text{ m}} = 0.5 \frac{\text{m}}{\text{s}^2}$$
.

c) Zeit bis Erreichen von s_1

Da die Beschleunigung konstant ist, liegt eine gleichmäßig beschleunigte Bewegung vor. An der Stelle s_1 hat der Körper die Geschwindigkeit v_1 . Damit gilt:

$$v_1 = a t_1 = \frac{1}{2} \frac{v_1^2}{s_1} t_1$$

Daraus folgt:

$$t_1 = \frac{v_1 \cdot 2s_1}{v_1^2} = 2\frac{s_1}{v_1}$$

Zahlenwert: $t_1 = 2 \cdot \frac{100 \text{ m}}{10 \text{ m/s}} = \underline{20 \text{ s}}$

a) Zusammenhang zwischen Ort und Beschleunigung

Steigung: $k = -\frac{a_0}{s_E}$

Damit gilt: $a(s) = a_0 - a_0 \frac{s}{s_E} = a_0 \left(1 - \frac{s}{s_E} \right)$

b) Geschwindigkeiten

Mit $v_0 = 0$ und $s_0 = 0$ gilt für die Geschwindigkeit bei ortsabhängiger Beschleunigung:

$$v(s) = \sqrt{2 \int_{0}^{s} a(\overline{s}) d\overline{s}}$$

Für die gegebene Beschleunigung berechnet sich das Integral zu

$$\int_{0}^{s} a(\overline{s}) d\overline{s} = a_{0} \int_{0}^{s} \left(1 - \frac{\overline{s}}{s_{E}} \right) d\overline{s} = a_{0} \left[\overline{s} - \frac{1}{2} \frac{\overline{s}^{2}}{s_{E}} \right]_{\overline{s}=0}^{\overline{s}=s} = a_{0} s \left(1 - \frac{s}{2 s_{E}} \right).$$

Damit gilt für die Geschwindigkeit:

$$v(s) = \sqrt{2 a_0 s \left(1 - \frac{s}{2 s_E}\right)}$$

Zahlenwerte:

$$v_1 = v(s_1) = \sqrt{2 \cdot 22.5 \,\text{m/s}^2 \cdot 60 \,\text{m} \cdot \left(1 - \frac{60}{2 \cdot 150}\right)} = \underline{46.48 \,\text{m/s}}$$

 $v_E = v(s_E) = \sqrt{2 \cdot 22.5 \,\text{m/s}^2 \cdot 150 \,\text{m} \cdot (1 - 0.5)} = \underline{58.09 \,\text{m/s}}$

c) Zeiten

Mit $v_0 = 0$ und $s_0 = 0$ gilt für die Zeit bei ortsabhängiger Beschleunigung:

$$t(s) = \int_{0}^{s} \frac{d\overline{s}}{v(\overline{s})} = \int_{0}^{s} \frac{d\overline{s}}{\sqrt{2a_{0}\overline{s} - \frac{a_{0}}{s_{E}}\overline{s}^{2}}} = \left[-\sqrt{\frac{s_{E}}{a_{0}}} \arcsin\left(\frac{-2a_{0}\frac{\overline{s}}{s_{E}} + 2a_{0}}{2a_{0}}\right) \right]_{\overline{s}=0}^{\overline{s}=s}$$

$$= \left[-\sqrt{\frac{s_{E}}{a_{0}}} \arcsin\left(1 - \frac{\overline{s}}{s_{E}}\right) \right]_{\overline{s}=0}^{\overline{s}=s} = \sqrt{\frac{s_{E}}{a_{0}}} \left(\frac{\pi}{2} - \arcsin\left(1 - \frac{s}{s_{E}}\right)\right)$$

Zahlenwerte:

$$\sqrt{\frac{s_E}{a_0}} = \sqrt{\frac{150 \text{ m}}{22,5 \text{ m/s}^2}} = 2,582 \text{ s}$$

$$t(s_1) = 2,582 \text{ s} \cdot \left(\frac{\pi}{2} - \arcsin\left(1 - \frac{60}{150}\right)\right) = 2,394 \text{ s}$$

$$t(s_E) = 2,582 \text{ s} \cdot \frac{\pi}{2} = 4,056 \text{ s}$$

Aufgabe 14

a) <u>Geschwindigkeit zum Erreichen der Höhe *H*</u>

Wenn der Körper die Höhe *H* erreicht, ist seine Geschwindigkeit null. Bei einer ortsabhängigen Beschleunigung gilt für die Geschwindigkeit:

$$v^{2}(h) = v_{0}^{2} + 2 \int_{0}^{h} g(s) ds = v_{0}^{2} - 2 g_{0} \int_{0}^{h} \left(\frac{R}{R+s}\right)^{2} ds$$

Mit v(H) = 0 folgt:

$$v_0^2 = 2 g_0 \int_0^H \left(\frac{R}{R+s}\right)^2 ds = -2 g_0 R^2 \left[\frac{1}{R+s}\right]_{s=0}^{s=H} = 2 g_0 \left(R - \frac{R^2}{R+H}\right)$$

Zahlenwert:

$$v_0^2 = 2.9,81 \text{ m/s}^2 \cdot \left(6371 - \frac{6371^2}{6371 + 50}\right) \cdot 1000 \text{ m} = 973361 \frac{\text{m}^2}{\text{s}^2}, \quad v_0 = \underline{986,6 \text{ m/s}}$$

b) Fluchtgeschwindigkeit

Wenn der Körper nicht zur Erde zurückfällt, wird seine Geschwindigkeit erst

in unendlicher Höhe null. Für die Fluchtgeschwindigkeit gilt daher

$$v_F = \lim_{H \to \infty} \sqrt{2 g_0 \left(R - \frac{R^2}{R + H} \right)} = \sqrt{2 g_0 R}$$
.

Zahlenwert:

$$v_F = \sqrt{2.9,81 \,\text{m/s}^2 \cdot 6371 \cdot 1000 \,\text{m}} = 11180 \,\text{m/s}$$

Aufgabe 15

a) Maximale Höhe

Während der Steigphase gilt für die Höhe

$$h(v) = \int_{v_0}^{v} \frac{\overline{v} d \overline{v}}{a_s(\overline{v})}.$$

Bei Erreichen der größten Höhe ist die Geschwindigkeit null. Daher gilt:

$$H = h(0) = \int_{v_0}^{0} \frac{\overline{v} d\overline{v}}{a_s(\overline{v})} = -\int_{v_0}^{0} \frac{\overline{v} d\overline{v}}{g + k\overline{v}^2} = -\left[\frac{1}{2k} \ln(g + k\overline{v}^2)\right]_{\overline{v} = v_0}^{\overline{v} = 0}$$
$$= -\frac{1}{2k} \left(\ln(g) - \ln(g + kv_0^2)\right) = \frac{1}{2k} \ln\left(1 + \frac{kv_0^2}{g}\right)$$

Zahlenwert:

$$H = \frac{1}{2 \cdot 4 \cdot 10^{-3} \,\mathrm{m}^{-1}} \ln \left(1 + \frac{4 \cdot 10^{-3} \,\mathrm{m}^{-1} \cdot 50^2 \,\mathrm{m}^2 / \mathrm{s}^2}{9,81 \,\mathrm{m/s}^2} \right) = 87,84 \,\mathrm{m}$$

b) Steigzeit

Während der Steigphase gilt für die Zeit

$$t(v) = \int_{v_0}^{v} \frac{d\overline{v}}{a_s(\overline{v})}.$$

Bei Erreichen der größten Höhe ist die Geschwindigkeit null. Daher gilt:

$$T_{H} = t(0) = \int_{v_{0}}^{0} \frac{d\bar{v}}{a_{S}(\bar{v})} = -\int_{v_{0}}^{0} \frac{d\bar{v}}{g + k\bar{v}^{2}} = -\frac{1}{k} \int_{v_{0}}^{0} \frac{d\bar{v}}{g/k + \bar{v}^{2}}$$
$$= -\frac{1}{k} \left[\sqrt{\frac{k}{g}} \arctan\left(\sqrt{\frac{k}{g}}\bar{v}\right) \right]_{v = v_{0}}^{\bar{v} = 0} = \frac{1}{\sqrt{kg}} \arctan\left(\sqrt{\frac{k}{g}}v_{0}\right)$$

Zahlenwert:

$$T_H = \frac{1}{\sqrt{4 \cdot 10^{-3} \,\mathrm{m}^{-1} \cdot 9,81 \,\mathrm{m/s}^2}} \arctan \left(\sqrt{\frac{4 \cdot 10^{-3} \,\mathrm{m}^{-1}}{9,81 \,\mathrm{m/s}^2}} \cdot 50 \,\mathrm{m/s} \right) = 3.989 \,\mathrm{s}$$

c) Auftreffgeschwindigkeit

Zu Beginn des Fallens hat der Körper die Höhe H und die Geschwindigkeit null. Daher gilt für die Höhe:

$$h(v) = H + \int_{0}^{v} \frac{\overline{v} d\overline{v}}{a_{F}(\overline{v})}$$

Wenn der Körper wieder am Boden auftrifft, ist seine Höhe null. Daher gilt:

$$0 = h(v_B) = H + \int_0^{v_B} \frac{\bar{v} d\bar{v}}{a_F(\bar{v})} = H - \int_0^{v_B} \frac{\bar{v} d\bar{v}}{g - k\bar{v}^2} = H - \left[-\frac{1}{2k} \ln(g - k\bar{v}^2) \right]_{v=0}^{\bar{v} = v_B}$$

$$= H + \frac{1}{2k} \ln\left(\frac{g - kv_B^2}{g}\right)$$

Auflösen nach der gesuchten Geschwindigkeit v_B ergibt

$$-2kH = \ln\left(\frac{g - k v_B^2}{g}\right) \rightarrow g e^{-2kH} = g - k v_B^2 \rightarrow v_B = -\sqrt{\frac{g}{k}} \sqrt{1 - e^{-2kH}}.$$

Da der Körper nach unten fällt, muss das negative Vorzeichen gewählt werden.

Bemerkung:

 $v_E = \sqrt{g/k}$ ist die Grenzfallgeschwindigkeit, die der Körper nach einer hinreichend langen Fallstrecke asymptotisch erreicht. Die Geschwindigkeit des fallenden Körpers kann nicht größer als die Grenzfallgeschwindigkeit werden.

Mit

$$2kH = \ln\left(1 + \left(\frac{v_0}{v_E}\right)^2\right) = \ln\left(\frac{v_E^2 + v_0^2}{v_E^2}\right)$$

(siehe a)) folgt

$$1 - e^{-2kH} = 1 - \frac{v_E^2}{v_E^2 + v_0^2} = \frac{v_0^2}{v_E^2 + v_0^2}.$$

Damit gilt für die Auftreffgeschwindigkeit:

$$v_B = -v_E \sqrt{\frac{v_0^2}{v_E^2 + v_0^2}} = -\frac{v_E v_0}{\sqrt{v_E^2 + v_0^2}}$$

Zahlenwerte:

$$v_E = \sqrt{\frac{9.81 \,\text{m/s}^2}{4 \cdot 10^{-3} \,\text{m}^{-1}}} = 49,52 \,\text{m/s}$$

$$v_B = -\frac{49,52 \,\text{m/s} \cdot 50 \,\text{m/s}}{\sqrt{49.52^2 \,\text{m}^2/\text{s}^2 + 50^2 \,\text{m}^2/\text{s}^2}} = -35,18 \,\text{m/s}$$

d) Auftreffzeit

Während des Fallens gilt für die ab dem Abwurf gemessene Zeit:

$$t(v) = T_H + \int_0^v \frac{d\overline{v}}{a_F(\overline{v})}$$

Daraus folgt für die Auftreffzeit:

$$\begin{split} T_{B} &= T_{H} + \int_{0}^{v_{B}} \frac{d\,\overline{v}}{a_{F}(\overline{v})} = T_{H} - \int_{0}^{v_{B}} \frac{d\,\overline{v}}{g - k\,\overline{v}^{2}} = T_{H} - \frac{1}{k} \int_{0}^{v_{B}} \frac{d\,\overline{v}}{v_{E}^{2} - \overline{v}^{2}} \\ &= T_{H} - \frac{1}{k\,v_{E}} \left[\frac{1}{2} \ln \left(\frac{v_{E} + \overline{v}}{v_{E} - \overline{v}} \right) \right]_{\overline{v} = v_{B}}^{\overline{v} = v_{B}} = T_{H} - \frac{1}{2\,k\,v_{E}} \ln \left(\frac{v_{E} + v_{B}}{v_{E} - v_{B}} \right) \end{split}$$

Zahlenwert:

$$T_B = 3,989 \text{ s} - \frac{1}{2 \cdot 4 \cdot 10^{-3} \text{ m}^{-1} \cdot 49,52 \text{ m/s}} \ln \left(\frac{49,52 \text{ m/s} - 35,18 \text{ m/s}}{49,52 \text{ m/s} + 35,18 \text{ m/s}} \right) = 8,472 \text{ s}$$

Aufgabe 16

a) Ortsabhängige Geschwindigkeit

Mit den gegebenen Anfangsbedingungen gilt:

$$v(s) = \sqrt{v_0^2 + 2\int_0^s a(\overline{s}) d\overline{s}}$$

Das Integral berechnet sich zu:

$$\int_{0}^{s} a(\overline{s}) d\overline{s} = -v_{0}^{2} \int_{0}^{s/L} \left(1 - \frac{\overline{s}}{L}\right) d\left(\frac{\overline{s}}{L}\right) = v_{0}^{2} \left[\frac{1}{2} \left(1 - \frac{\overline{s}}{L}\right)^{2}\right]_{\overline{s}/L = 0}^{\overline{s}/L = s/L}$$

$$= \frac{v_{0}^{2}}{2} \left(1 - 2\frac{s}{L} + \frac{s^{2}}{L^{2}} - 1\right) = \frac{v_{0}^{2}}{2} \left(\frac{s^{2}}{L^{2}} - 2\frac{s}{L}\right)$$

Damit gilt für die Geschwindigkeit:

$$v(s) = v_0 \sqrt{1 + \frac{s^2}{L^2} - 2\frac{s}{L}} = v_0 \sqrt{\left(1 - \frac{s}{L}\right)^2} = v_0 \left(1 - \frac{s}{L}\right)$$

b) Zeitabhängiger Ort

Für die Zeit t, zu der sich der Punkt am Ort s befindet, gilt:

$$t = \int_{0}^{s} \frac{d\overline{s}}{v(\overline{s})} = \frac{L}{v_0} \int_{0}^{s/L} \frac{d\overline{s}/L}{1 - \overline{s}/L} = -\frac{L}{v_0} \left[\ln\left(1 - \frac{\overline{s}}{L}\right) \right]_{\overline{s}/L = 0}^{\overline{s}/L = s/L} = -\frac{L}{v_0} \ln\left(1 - \frac{s}{L}\right)$$

Auflösen nach dem Ort:

$$-\frac{v_0 t}{L} = \ln\left(1 - \frac{s(t)}{L}\right)$$

$$e^{-v_0 t/L} = 1 - \frac{s(t)}{L} \implies s(t) = L\left(1 - e^{-v_0 t/L}\right)$$

c) Zeitabhängige Geschwindigkeit

$$v(t) = \frac{ds}{dt}(t) = v_0 e^{-v_0 t/L}$$

Aufgabe 17

a) Zeitpunkt des Einscherens

Geschwindigkeit-Zeit-Gesetze für $t > t_A$:

Fahrzeug A: $v_A(t) = a_A(t - t_A)$

Fahrzeug *B*: $v_B(t) = v_B$

Ort-Zeit-Gesetze für $t > t_A$:

Fahrzeug *A*: $s_A(t) = h + \frac{1}{2} a_A (t - t_A)^2$

Fahrzeug B: $s_B(t) = v_B t$

Zum Zeitpunkt t_E muss gelten:

$$v_A(t_E) = v_B(t_E) : a_A(t_E - t_A) = v_B$$
 (1)

$$s_B(t_E) = s_A(t_E) + d$$
: $v_B t_E = h + \frac{1}{2} a_A (t_E - t_A)^2 + d$ (2)

Aus (1) folgt:
$$t_E - t_A = \frac{v_B}{a_A}$$

Einsetzen in (2) ergibt:
$$v_B t_E = h + d + \frac{1}{2} \frac{v_B^2}{a_A}$$

Daraus folgt:
$$t_E = \frac{h+d}{v_B} + \frac{1}{2} \frac{v_B}{a_A}$$

Zahlenwert:
$$t_E = \frac{150 \text{ m}}{30 \text{ m/s}} + \frac{1}{2} \frac{30 \text{ m/s}}{5 \text{ m/s}^2} = 5 \text{ s} + 3 \text{ s} = 8 \text{ s}$$

b) <u>Beschleunigungsbeginn</u>

Aus (1) folgt:
$$t_A = t_E - \frac{v_B}{a_A}$$

Zahlenwert:
$$t_A = 8s - \frac{30 \text{ m/s}}{5 \text{ m/s}^2} = 8s - 6s = 2s$$

Aufgabe 18

a) Beschleunigung

Geschwindigkeit-Zeit-Gesetze für $t > t_1$:

Fahrzeug A:
$$v_A(t) = v_A$$

Fahrzeug *B*:
$$v_B(t) = a_B(t-t_1)$$

Ort-Zeit-Gesetze für $t > t_1$:

Fahrzeug A:
$$s_A(t) = v_A t$$

Fahrzeug *B*:
$$s_B(t) = d + \frac{1}{2} a_B (t - t_1)^2$$

Zum Zeitpunkt t_E des Einholens muss gelten:

$$v_B(t_E) = v_A : a_B(t_E - t_1) = v_A$$
 (1)

$$s_B(t_E) = s_A(t_E) : d + \frac{1}{2} a_B (t_E - t_1)^2 = v_A t_E$$
 (2)

Auflösen:

(1)
$$\rightarrow t_E - t_1 = \frac{v_A}{a_B}, \quad t_E = t_1 + \frac{v_A}{a_B}$$

in (2) $\rightarrow d + \frac{1}{2} a_B \left(\frac{v_A}{a_B}\right)^2 = v_A \left(t_1 + \frac{v_A}{a_B}\right)$
 $\rightarrow d a_B + \frac{1}{2} v_A^2 = v_A (a_B t_1 + v_A) \rightarrow (d - v_A t_1) a_B = \frac{1}{2} v_A^2 \rightarrow a_B = \frac{v_A^2}{2(d - v_A t_1)}$

Zahlenwert:

$$a_B = \frac{15^2 \text{m}^2/\text{s}^2}{2(200 \text{m} - 15 \text{m/s} \cdot 10 \text{s})} = 2,25 \text{m/s}^2$$

b) Zeitpunkt des Einholens

$$t_E = t_1 + \frac{v_A}{a_B} = 10 \text{ s} + \frac{15 \text{ m/s}}{2,25 \text{ m/s}^2} = 16,67 \text{ s}$$

c) Ort des Einholens

$$s_E = s_A(t_E) = v_A t_E = 15 \text{ m/s} \cdot 16,67 \text{ s} = 250 \text{ m}$$

Probe:

$$s_B(t_E) = d + \frac{1}{2} a_B (t_E - t_1)^2 = 200 \,\text{m/s} + \frac{1}{2} \cdot 2,25 \,\text{m/s}^2 \cdot 6,67 \,\text{s}^2 = 250 \,\text{m}$$