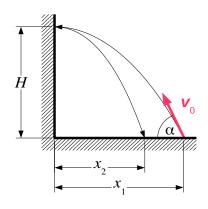
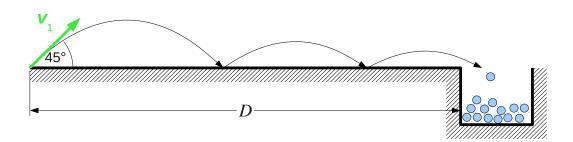
2.4 Stoßvorgänge

Aufgaben


Aufgabe 1

Ein Ball, der in der Entfernung x_1 von der Wand abgeworfen wird, trifft in der Höhe H senkrecht auf die Wand. Er prallt zurück und kommt in der Entfernung x_2 wieder auf dem Boden auf.

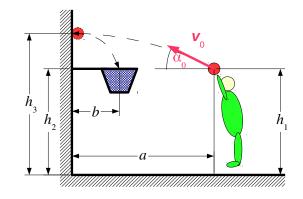

- a) Welchen Wert haben die Wurfgeschwindigkeit v_0 und der Wurfwinkel α ?
- b) Wie groß ist die Stoßzahl *k*?

Zahlenwerte: H = 5 m, $x_1 = 5$ m, $x_2 = 4$ m

(Ergebnis: $\alpha = 63,43^{\circ}$, $v_0 = 11,07$ m/s, k = 0,8)

Aufgabe 2

Eine Firma, die Tennisbälle herstellt, möchte gewährleisten, dass die ausgelieferten Bälle auf hartem Boden eine Stoßzahl von mindestens 0,8 haben. Zum Sortieren werden die Bälle mit einer Wurfmaschine unter einem Winkel von 45° mit einer Anfangsgeschwindigkeit v_1 ausgeworfen. Sie sollen anschließend zweimal auf dem Boden aufkommen und beim dritten Aufkommen eingesammelt werden. Der Boden kann als glatt angenommen werden.

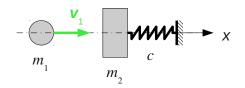

In welchem Abstand von der Wurfmaschine muss sich der Sammelbehälter befinden?

Zahlenwert: $v_1 = 5$ m/s

(Ergebnis: D = 6,218 m)

Aufgabe 3

Ein Basketballspieler hat den Abstand a zur Wand, an der der Korb hängt. Er möchte den Ball so werfen, dass er in der Höhe h_3 senkrecht auf die Wand trifft und anschließend in der Mitte des Korbs landet. Die Mitte des Korbs befindet sich in der Höhe h_2 und hat den Abstand b von der Wand.



- a) Mit welcher Geschwindigkeit v_1 muss der Ball auf die Wand auftreffen?
- b) Aus welcher Höhe h_1 muss der Ball geworfen werden, und wie groß müssen Wurfgeschwindigkeit v_0 und Wurfwinkel α_0 sein?

Zahlenwerte: a = 2 m, b = 1 m, $h_2 = 2.5$ m, $h_3 = 3$ m, Stoßzahl k = 0.7 (Ergebnis: $v_1 = 4.474$ m/s; $v_0 = 6.265$ m/s; $\alpha_0 = 44.42^\circ$; $h_1 = 2.020$ m)

Aufgabe 4

Die Masse m_1 stößt mit der Geschwindigkeit v_1 gegen die Masse m_2 . Die Masse m_2 wird durch eine Feder mit der Federsteifigkeit c gehalten und ist anfangs in Ruhe.

- a) Welche Geschwindigkeiten w_1 und w_2 haben die beiden Massen unmittelbar nach dem Stoß?
- b) Wie groß ist die maximale Verkürzung s_{max} der Feder?

Zahlenwerte: $m_1 = 10 \text{ kg}$, $m_2 = 50 \text{ kg}$, $v_1 = 10 \text{ m/s}$, $c = 10^6 \text{ N/m}$, Stoßzahl k = 0.8 (Ergebnis: $w_1 = -5 \text{ m/s}$, $w_2 = 3 \text{ m/s}$, $s_{max} = 0.02121 \text{ m}$)

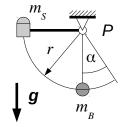
Aufgabe 5

Fahrzeug 1 der Masse m_1 steht an der Ampel. Fahrzeug 2 der Masse m_2 fährt auf das stehende Fahrzeug 1 auf. Nach dem Aufprall rutscht Fahrzeug 1 mit blockierten Rädern geradeaus und kommt nach der Strecke s zum Stillstand.

a) Welche Geschwindigkeit w_1 hatte Fahrzeug 1 unmittelbar, nachdem

Fahrzeug 2 aufgefahren war?

b) Welche Geschwindigkeit v_2 hatte Fahrzeug 2 unmittelbar vor dem Auffahren?


Zahlenwerte: $m_1 = 1000 \text{ kg}$, $m_2 = 1200 \text{ kg}$, s = 2 m, Gleitreibungskoeffizient $\mu = 0.7$; Stoßzahl k = 0.2

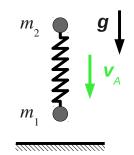
(Ergebnis: $w_1 = 5,241 \text{ m/s}$; $v_2 = 8,007 \text{ m/s}$)

Aufgabe 6

Eine Golfballtestmaschine besteht aus einem Schläger und einer kreisförmigen Bahn mit Radius r.

Der Schläger ist im Punkt P reibungsfrei gelenkig gelagert. Er besteht aus dem Schlägerkopf mit der Masse m_S und einem als masselos angenommenen Stab.

Der Schläger wird in der waagerechten Lage aus der Ruhe losgelassen und trifft den Golfball mit der Masse m_B , der im tiefsten Punkt der Bahn liegt.

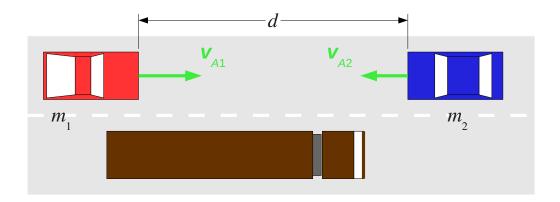

- a) Mit welcher Geschwindigkeit v_s trifft der Schläger auf den Golfball?
- b) Welche Geschwindigkeit v_B hat der Golfball unmittelbar nach dem Schlag?
- c) Mit welcher Geschwindigkeit v_0 verlässt der Golfball die Maschine, wenn Reibungskräfte vernachlässigt werden?

Zahlenwerte: $m_S = 5$ kg, $m_B = 0.2$ kg, r = 1.5 m, $\alpha = 30^\circ$, Stoßzahl k = 0.9

(Ergebnis: $v_S = 5,425 \text{ m/s}, v_B = 9,911 \text{ m/s}, v_0 = 9,710 \text{ m/s})$

Aufgabe 7

Die beiden Massenpunkte m_1 und m_2 sind durch eine Feder miteinander verbunden und fallen beide mit der gleichen Geschwindigkeit. Unmittelbar vor dem Aufprall auf den Boden haben sie die Geschwindigkeit v_A .



- a) Wie groß ist die Geschwindigkeit v_{B1} der Masse m_1 unmittelbar nach dem Stoß?
- b) Welche Geschwindigkeit v_{BS} hat der Schwerpunkt des Massenpunktsystems unmittelbar nach dem Stoß?
- c) Beschreiben Sie qualitativ (ohne Rechnung) das Verhalten des Systems nach dem Stoß? Welche Fälle können auftreten?

Zahlenwerte: $m_1 = 2 \text{ kg}$, $m_2 = 1 \text{ kg}$, $v_A = 10 \text{ m/s}$, Stoßzahl k = 0.8

(Ergebnis: $v_{B1} = 8 \text{ m/s}, v_{BS} = 2 \text{ m/s}$)

Aufgabe 8

Während des Überholens bemerkt der Fahrer von Fahrzeug 1 (Masse m_1) das entgegenkommende Fahrzeug 2 (Masse m_2). Zur gleichen Zeit bemerkt auch der Fahrer von Fahrzeug 2 das ihm entgegenkommende Fahrzeug 1. Zu diesem Zeitpunkt haben die Fahrzeuge einen Abstand d voneinander. Die Geschwindigkeit von Fahrzeug 1 ist v_{A1} und die Geschwindigkeit von Fahrzeug 2 ist v_{A2} .

Zu dem Zeitpunkt, zu dem sie das entgegenkommende Fahrzeug bemerken, treten beide Fahrer voll auf die Bremse. Beide Fahrzeuge sind mit ABS ausgestattet, das ein Blockieren der Räder verhindert.

- a) Wie groß sind die Geschwindigkeiten v_{B1} von Fahrzeug 1 und v_{B2} von Fahrzeug 2 unmittelbar vor dem Zusammenprall?
- b) Wie groß sind die Geschwindigkeiten w_1 von Fahrzeug 1 und w_2 von Fahrzeug 2 unmittelbar nach dem Zusammenprall?
- c) Wie groß ist der Verlust ΔE an mechanischer Energie während des Stoßes infolge von Deformation und Wärme?

Zahlenwerte: $m_1 = 1000 \text{ kg}$, $m_2 = 1500 \text{ kg}$, $v_{A1} = 120 \text{ km/h}$, $v_{A2} = 100 \text{ km/h}$, d = 100 m, Haftungskoeffizient $\mu_0 = 0.8$; Stoßzahl k = 0.3

(Ergebnis: $v_{B1} = 53,89 \text{ km/h} \rightarrow$, $v_{B2} = 33,90 \text{ km/h} \leftarrow$; $w_1 = 14,58 \text{ km/h} \leftarrow$, $w_2 = 11,75 \text{ km/h} \rightarrow$; $\Delta E = 162,3 \text{ kJ}$)

Aufgabe 9

Beim geraden zentrischen Stoß seien die Geschwindigkeiten w_1 und w_2 nach

dem Stoß bekannt. Welche Beziehungen ergeben sich für die Geschwindigkeiten v_1 und v_2 vor dem Stoß?

Hinweis: Verwenden Sie den Impulserhaltungssatz und die Stoßbedingung. (Ergebnis:

$$v_{1} = \frac{k(m_{1}w_{1} + m_{2}w_{2}) - m_{2}(w_{1} - w_{2})}{k(m_{1} + m_{2})}, \quad v_{2} = \frac{k(m_{1}w_{1} + m_{2}w_{2}) + m_{1}(w_{1} - w_{2})}{k(m_{1} + m_{2})})$$

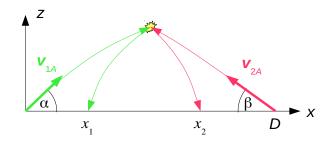
Aufgabe 10

Fahrzeug B der Masse m_B fährt in der Ebene auf das vorausfahrende Fahrzeug A der Masse m_A auf. Eine Auswertung der Unfallspuren ergibt:

- Nach dem Auffahren ist Fahrzeug A die Strecke s_{A2} und Fahrzeug B die Strecke s_{B2} gerutscht. Der Gleitreibungskoeffizient für beide Fahrzeuge ist μ_2 .
- Der Bremsweg von Fahrzeug B vor dem Auffahren beträgt s_{B1} . Der Gleitreibungskoeffizient für den Bremsvorgang ist μ_1 .

Der Auffahrvorgang kann als gerader zentrischer Stoß mit der Stoßzahl k angenommen werden.

- a) Ermitteln Sie die Geschwindigkeiten w_A von Fahrzeug A und w_B von Fahrzeug B unmittelbar nach dem Stoß.
- b) Ermitteln Sie die Geschwindigkeiten v_A von Fahrzeug A und v_B von Fahrzeug B unmittelbar vor dem Stoß.
- c) Welche Geschwindigkeit v_{B0} hatte Fahrzeug B bei Bremsbeginn?


Zahlenwerte: $m_A = 1500 \text{ kg}$, $m_B = 2000 \text{ kg}$, $s_{A2} = 20 \text{ m}$, $s_{B2} = 15 \text{ m}$, $s_{B1} = 10 \text{ m}$, $\mu_1 = 0.9$, $\mu_2 = 0.7$, k = 0.3

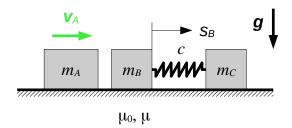
(Hochschule Landshut, SS 2011)

(Ergebnis: $w_A = 16,57 \text{ m/s}$, $w_B = 14,35 \text{ m/s}$; $v_A = 11,07 \text{ m/s}$, $v_B = 18,47 \text{ m/s}$; $v_{B0} = 22,75 \text{ m/s}$)

Aufgabe 11

Geschoss 1 der Masse m_1 wird mit der Geschwindigkeit v_{1A} unter dem Winkel α abgeschossen. Um das Geschoss abzuwehren, wird gleichzeitig im Abstand D Geschoss 2 der Masse m_2 mit der Geschwindigkeit

 v_{2A} unter dem Winkel β abgeschossen.


- a) Wie muss der Winkel β gewählt werden, damit Geschoss 1 Geschoss 2 trifft?
- b) Welche Geschwindigkeiten v_{1Bx} , v_{1Bz} sowie v_{2Bx} , v_{2Bz} haben die beiden Geschosse unmittelbar vor dem Zusammenprall?
- c) Welche Geschwindigkeiten v_{1Cx} , v_{1Cz} sowie v_{2Cx} , v_{2Cz} haben die beiden Geschosse unmittelbar nach dem Zusammenprall, wenn angenommen wird, dass es sich um einen glatten schiefen zentrischen Stoß handelt, bei dem die Stoßnormale parallel zur x-Achse ist?
- d) An welchen Stellen x_1 und x_2 treffen die Geschosse auf dem Boden auf?

Zahlenwerte: $v_{1A} = 540$ km/h, $\alpha = 45^{\circ}$, $v_{2A} = 630$ km/h, D = 2 km; $m_1 = 100$ kg, $m_2 = 75$ kg, k = 0.4

(Ergebnis: $\beta = 37,31^{\circ}$; $v_{1Bx} = 381,8 \text{ km/h} \rightarrow$, $v_{2Bx} = 501,1 \text{ km/h} \leftarrow$, $v_{1Bz} = v_{2Bz} = 93,85 \text{ km/h}$; $v_{1Cx} = 147,9 \text{ km/h} \leftarrow$, $v_{2Cx} = 205,3 \text{ km/h} \rightarrow$, $v_{1Cz} = v_{2Cz} = 93,85 \text{ km/h}$; $x_1 = 311,8 \text{ m}$, $x_2 = 1633 \text{ m}$)

Aufgabe 12

Die Massenpunkte A, B und C befinden sich auf einer horizontalen rauen Fläche (Haftzahl μ_0 , Reibungskoeffizient μ). Sie haben die Massen m_A , m_B und m_C . Die Massenpunkte B und C sind durch eine lineare Feder mit der Federkonstanten c verbunden, die zunächst entspannt ist.

Die Massenpunkte B und C sind zunächst in Ruhe. Dann stößt der Massenpunkt A mit der Geschwindigkeit v_A auf den Massenpunkt B (Stoßzahl k).

- a) Bestimmen Sie die Geschwindigkeit w_B des Massenpunktes B unmittelbar nach dem Stoß.
- b) Bestimmen Sie die Strecke s_B , die der Massenpunkt B mindestens zurücklegen muss, damit der Massenpunkt C zu gleiten beginnt.
- c) Wie groß muss die Geschwindigkeit w_B des Massenpunktes B unmittelbar nach dem Stoß mindestens sein, damit der Massenpunkt C zu gleiten beginnt?

Gegeben: v_A , c/m = 400 s⁻², $m_A = 4m$, $m_B = m$, $m_C = 2m$, k = 0.75, $\mu_0 = 0.9$, $\mu = 0.6$ (HM, Prüfung WS 2021)

(Ergebnis: a) $w_B = 1.4v_A$; b) $s_B > 4.415$ cm; c) $w_B > 1.140$ m/s)